Finding a Derivative, find the derivative of the algebraic function.

We are given the function:
[tex]f(x)=x^4(1-\frac{2}{x+1})[/tex]To find its derivative, we can distribute x^4 first so that we won't have to apply both the product rule and the quotient rule.
[tex]f(x)=x^4-\frac{2x^4}{x+1}[/tex]So we'll just solve for the derivative of the first term, x^4, then add it to the derivative of the second term, 2x^4/(x+1).
[tex]f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)[/tex]where g(x) = x^4 and h(x) = 2x^4/(x+1).
[tex]\begin{gathered} g(x)=x^4 \\ g^{\prime}(x)=4x^{4-1} \\ g^{\prime}(x)=4x^3 \end{gathered}[/tex][tex]\begin{gathered} h(x)=\frac{2x^4}{x+1} \\ \\ h^{\prime}(x)=\frac{(x+1)(2)(4)(x^{4-1})-(2x^4)(1+0)}{(x+1)^2} \\ \\ h^{\prime}(x)=\frac{(x+1)(8x^3)-(2x^4)}{(x+1)^2} \\ \\ h^{\prime}(x)=\frac{8x^4+8x^3-2x^4}{(x+1)^2} \\ \\ h^{\prime}(x)=\frac{6x^4+8x^3}{(x+1)^2} \\ \\ h^{\prime}(x)=\frac{2x^3(3x+4)}{(x+1)^2} \end{gathered}[/tex]So f'(x) must be:
[tex]f^{\prime}(x)=4x^3+\frac{2x^{3}(3x+4)}{(x+1)^{2}}[/tex]