We are given a triangle with the following three sides.
a = 35
b = 34
c = 28
We are asked to find all three angles of the triangle.
The angles of the triangle can be found using the law of cosines.
1. Angle A
[tex]\begin{gathered} \cos(A)=\frac{b^2+c^2-a^2}{2bc} \\ \cos(A)=\frac{34^2+28^2-35^2}{2(34)(28)} \\ \cos(A)=0.3755 \\ A=\cos^{-1}(0.3755) \\ A=67.9\degree \end{gathered}[/tex]
So, angle A is 67.9°
2. Angle B
[tex]\begin{gathered} \cos(B)=\frac{a^2+c^2-b^2}{2ac} \\ \cos(B)=\frac{35^2+28^2-34^2}{2(35)(28)} \\ \cos(B)=0.4352 \\ B=\cos^{-1}(0.4352) \\ B=64.2\degree \end{gathered}[/tex]
So, angle B is 64.2°
3. Angle C
[tex]\begin{gathered} \cos(C)=\frac{a^2+b^2-c^2}{2ab} \\ \cos(C)=\frac{35^2+34^2-28^2}{2(35)(34)} \\ \cos(C)=0.6710 \\ C=\cos^{-1}(0.6710) \\ C=47.9\degree \end{gathered}[/tex]
So, angle C is 47.9°
Summary:
A = 67.9°
B = 64.2°
C = 47.9°