Power reduction formulas for squares:
[tex]\begin{gathered} \sin ^2u=\frac{1-\cos (2u)}{2} \\ \\ \cos ^2u=\frac{1+\cos (2u)}{2} \end{gathered}[/tex]
Given expression:
[tex]72\sin ^2x\cos ^2x[/tex]
Use the reduction formula: For the given expression u is x:
[tex]=72\cdot\frac{1-\cos2x}{2}\cdot\frac{1+\cos2x}{2}[/tex]
Simplify:
-Multiply:
[tex]=\frac{72\cdot(1-\cos 2x)(1+\cos 2x)}{4}[/tex]
-Divide 72 into 4:
[tex]=18(1-\cos 2x)(1+\cos 2x)[/tex]
Then, an equivalent expression that does not contain powers of trigonometric functions greater than 1 is:
[tex]18(1-\cos 2x)(x+\cos 2x)[/tex]