Answer:
21.33 m s^-1
Explanation:
To find the final velocity, we will use the equation for impulse, so
[tex]I=Ft=mv_f-mv_i[/tex]Where F is the force, t is the time, m is the mass, vf is the final velocity and vi is the initial velocity. We know that
F = 16 N
t = 2 min = 120 s
m = 90 kg
vi = 0 m/s
vf = ?
Solving for vf, we get:
[tex]\begin{gathered} Ft+mv_i=mv_f \\ \\ v_f=\frac{Ft-mv_i}{m} \end{gathered}[/tex]Then, we can replace the values to get
[tex]\begin{gathered} v_f=\frac{(16\text{ N\rparen\lparen120 s\rparen- \lparen90 kg\rparen\lparen0 m/s\rparen}}{90\text{ kg}} \\ \\ v_f=\frac{1920\text{ kg m/s}}{90\text{ kg}} \\ \\ v_f=21.33\text{ m/s} \end{gathered}[/tex]Therefore, the answer is
21.33 m s^-1