Respuesta :

Let's simplify the expression:

[tex]\begin{gathered} \frac{\cos x}{1+\sin x}-\frac{\cos x}{1-\sin x}=\frac{\cos x(1-\sin x)-\cos x(1+\sin x)}{(1+\sin x)(1-\sin x)} \\ =\frac{\cos x(1-\sin x-1-\sin x)}{1-\sin^2x} \\ =\frac{-2\sin x\cos x}{1-\sin^2x} \\ \text{ Now we use the pythagorean identity }\sin^2x+\cos^2x=1: \\ \frac{-2\sin x\cos x}{1-\sin^2x}=-\frac{2\sin x\cos x}{\cos^2x} \\ =-\frac{2\sin x}{\cos x} \\ \text{ Finally we need to remember that }\tan x=\frac{\sin x}{\cos x},\text{ then:} \\ -\frac{2\sin x}{\cos x}=-2\tan x \end{gathered}[/tex]

Therefore, we have:

[tex]\frac{\cos x}{1+\sin x}-\frac{\cos x}{1-\sin x}=-2\tan x[/tex]

RELAXING NOICE
Relax