Respuesta :

EXPLANATION

Since we have that the roots are (6,0) and (-2,0) and a point on the graph, the canonical quadratic equation is as follows:

[tex]y=a(x-6)(x-(-2))[/tex]

Subtracting:

[tex]y=a(x-6)(x+2)[/tex]

Applying the distributive property:

[tex]y=a(x^2+2x-6x-12)[/tex]

Adding like terms:

[tex]y=a(x^2-4x-12)[/tex]

Now, in order to compute the value of a, we must plug the point (10,24):

[tex]24=a(10^2-4\cdot10-12)[/tex]

Multiplying numbers:

[tex]24=a(100-40-12)[/tex]

Adding numbers:

[tex]24=a(48)[/tex]

Dividing both sides by 48:

[tex]\frac{24}{48}=a[/tex]

Simplifying:

[tex]\frac{1}{2}=a[/tex]

Switching sides:

[tex]a=\frac{1}{2}[/tex]

Plugging in a into the equation:

[tex]y=\frac{1}{2}(x^2-4x-12)[/tex]

Applying the distributive property:

[tex]y=\frac{1}{2}x^2-2x-6[/tex]

In conclusion, the expression of the quadratic equation is as follows:

[tex]y=\frac{1}{2}x^2-2x-6[/tex]

RELAXING NOICE
Relax