Respuesta :

We are given two similar triangles, that means that their corresponding sides are at the same proportion with each other, that is:

[tex]\frac{ST}{SZ}=\frac{RT}{YZ}[/tex]

Where:

[tex]\begin{gathered} ST=40 \\ SZ=35 \\ RT=3x-7 \\ YZ=2x+2 \end{gathered}[/tex]

Replacing the known values, we get:

[tex]\frac{40}{35}=\frac{3x-7}{2x+2}[/tex]

Now we will solve for "x". First by simplifying the fraction on the left:

[tex]\frac{8}{7}=\frac{3x-7}{2x+2}[/tex]

Now we multiply both sides by (2x+2):

[tex]\frac{8(2x+2)}{7}=3x-7[/tex]

Now we multiply both sides by 7:

[tex]8(2x+2)=7(3x-7)[/tex]

Now we solve the parenthesis:

[tex]16x+16=21x-49[/tex]

Now we subtract 21x on both sides:

[tex]16x-21x+16=-49[/tex]

Now we subtract 16 on both sides:

[tex]16x-21x=-49-16[/tex]

Solving the operations:

[tex]-5x=-65[/tex]

Now we divide both sides by -5

[tex]x=-\frac{65}{-5}=13[/tex]

Therefore, the value of x is 13. Now we replace in the equations for the segments, like this:

[tex]\begin{gathered} RT=3x-7 \\ RT=3(13)-7 \\ RT=32 \end{gathered}[/tex]

For the other segment:

[tex]\begin{gathered} YZ=2x+2 \\ YZ=2(13)+2 \\ YZ=28 \end{gathered}[/tex]

RELAXING NOICE
Relax