SIMILAR FIGURES USE THE SIMILARITY RELATIONSHIP TO FIND THE INDICATED VALUE.

We are given two similar triangles, that means that their corresponding sides are at the same proportion with each other, that is:
[tex]\frac{ST}{SZ}=\frac{RT}{YZ}[/tex]Where:
[tex]\begin{gathered} ST=40 \\ SZ=35 \\ RT=3x-7 \\ YZ=2x+2 \end{gathered}[/tex]Replacing the known values, we get:
[tex]\frac{40}{35}=\frac{3x-7}{2x+2}[/tex]Now we will solve for "x". First by simplifying the fraction on the left:
[tex]\frac{8}{7}=\frac{3x-7}{2x+2}[/tex]Now we multiply both sides by (2x+2):
[tex]\frac{8(2x+2)}{7}=3x-7[/tex]Now we multiply both sides by 7:
[tex]8(2x+2)=7(3x-7)[/tex]Now we solve the parenthesis:
[tex]16x+16=21x-49[/tex]Now we subtract 21x on both sides:
[tex]16x-21x+16=-49[/tex]Now we subtract 16 on both sides:
[tex]16x-21x=-49-16[/tex]Solving the operations:
[tex]-5x=-65[/tex]Now we divide both sides by -5
[tex]x=-\frac{65}{-5}=13[/tex]Therefore, the value of x is 13. Now we replace in the equations for the segments, like this:
[tex]\begin{gathered} RT=3x-7 \\ RT=3(13)-7 \\ RT=32 \end{gathered}[/tex]For the other segment:
[tex]\begin{gathered} YZ=2x+2 \\ YZ=2(13)+2 \\ YZ=28 \end{gathered}[/tex]