Given:
The coordinates of the vertex of the quadrilateral:
F(-5, 3) , G(-2, 3) , E(-6, 1) and D(-3, 1)
The rule for rotation 90 degrees counterclockwise about the origin is:
[tex](x,\text{ y) }\rightarrow\text{ (-y, x)}[/tex]Applying this rule to the coordinates of the vertices:
[tex]\begin{gathered} F(-5,\text{ 3) }\rightarrow\text{ F'(-3, -5)} \\ G(-2,\text{ 3) }\rightarrow\text{ G'(-3, -2)} \\ E(-6,\text{ 1) }\rightarrow\text{ E'(-1, -6)} \\ D(-3,\text{ 1) }\rightarrow\text{ D'(-1, -3)} \end{gathered}[/tex]Hence, the vertex at the point (-3, -2) is the point G