Respuesta :

Answer:

To Simplify each and leave answer in factored form ​

1)

[tex]\frac{18x^3y}{4x^4y}[/tex]

Cancelling the cmmon terms, we get,

[tex]=\frac{9}{2x}[/tex]

2)

[tex]\frac{30+42n}{9mn}[/tex]

Since the denominator is common to both the terms over addition , we get

[tex]=\frac{30}{9mn}+\frac{42n}{9mn}[/tex][tex]=\frac{10}{3mn}+_{}\frac{14}{3m}[/tex]

3)

[tex]\frac{2x^2+xy-y^2}{3x^2+3xy}[/tex]

we get,

[tex]=\frac{2x^2+xy+xy-xy-y^2}{3x^2+3xy}[/tex][tex]=\frac{2x^2+2xy-xy-y^2}{3x^2+3xy}[/tex][tex]=\frac{2x^2+2xy}{3x^2+3xy}-\frac{xy+y^2}{3x^2+3xy}[/tex]

[tex]=\frac{2(x^2+xy)}{3(x^2+xy)}-\frac{xy+y^2}{3x^2+3xy}[/tex][tex]=\frac{2}{3}-\frac{xy+y^2}{3x^2+3xy}[/tex]

RELAXING NOICE
Relax