I found the slopes and graphed it I just need help finding the lengths.Quadrilateral OPQR can be described as:square, rectangle, a rhombus, a parellogram, a generic quadraliteral


Given:
Point O=(-3,-3)
Point P=(3,-7)
Point Q=(5,-4)
Point R=(-1,0)
To determine the slope, we use the formula:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]To get the slope of OP, we let :
x1=-3
y1=-3
x2=3
y2=-7
So,
[tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-7-(-3)}{3-(-3)}=\frac{-4}{6}=-\frac{2}{3}[/tex]To get the length of OP, we use the distance formula:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]where:
d=distance
So,
[tex]\begin{gathered} d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ =\sqrt{(3-(-3))^2+(-7-(-3))^2} \\ Simplify \\ d=\sqrt{52} \\ d=2\sqrt{13} \end{gathered}[/tex]Hence, the length of OP is:
[tex]2\sqrt{13}[/tex]For PQ, we let:
x1=3
y1=-7
x2=5
y2=-4
So,
[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{-4-(-7)}{5-3}=1\frac{1}{2}=\frac{3}{2}[/tex][tex]\begin{gathered} d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ d=\sqrt{2^2+3^2}=\sqrt{13} \end{gathered}[/tex]For QR, we let:
x1=5
y1=-4
x2=-1
y2=0
So,
[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{0-(-4)}{-1-5}=\frac{4}{-6}=-\frac{2}{3}[/tex][tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\sqrt{(-6)^2+(4)^2}=\sqrt{52}=2\sqrt{13}[/tex]For RO, we let:
x1=-1
y1=0
x2=-3
y2=-3
[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{-3-0}{-3-(-1)}=\frac{-3}{-2}=1\frac{1}{2}=\frac{3}{2}[/tex][tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\sqrt{(-2)^2+(-3)^2}=\sqrt{13}[/tex]Therefore, the lengths are:
[tex]\begin{gathered} OP=2\sqrt{13} \\ PQ=\sqrt{13} \\ QR=2\sqrt{13} \\ RO=\sqrt{13} \end{gathered}[/tex]The given Quadrilateral OPQR is a rectangle since the opposite sides are equal and parallel to each other.