Given:
Mass of meteorite = 9 x 10¹⁴ kg
Initial Velocity of meteorite = 10 m/s
Assuming that the collision is elastic, let's determine the final velocities of earth and meteorite.
Where:
Mass of earth = 5.98 x 10²⁴ kg
To determine the final velocity, apply the conservation of momentum
[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2[/tex]Where:
m1 = 9 x 10¹⁴ kg
m2 = 5.98 x 10²⁴ kg
u1 is the initial velocity of meteorite = 10 m/s
u2 is the initial velocity of the earth = 0 m/s (the earth at rest).
v1 is the final velocity of the meteorite
v2 is the final velocity of the earth.
Thus, we have:
[tex]\begin{gathered} (9\ast10^{14}\times10)+(5.98\ast10^{24}\times0)=(9\ast10^{14}\times v_1)+(5.98\ast10^{24}\times v_2) \\ \\ 9\ast10^{15}=9\ast10^{14}v_1+5.98\ast10^{24}v_2 \end{gathered}[/tex][tex]10=-v_1+v_2[/tex]Now, let's solve the system of equations:
[tex]\begin{gathered} 9\ast10^{15}=9\ast10^{14}v_1+5.98\ast10^{24}v_2 \\ \\ 10=-v_1+v_2 \end{gathered}[/tex]