AB=15 AD=31 BC=31 CD=15
Explanation
Step 1
the perimeter of the parallelogram ABCD is
[tex]\begin{gathered} \text{Perimeter}=AB+BC+CD+AD \\ \text{Also} \\ \text{Perimeter}=92\text{ cm} \\ so \\ 92=AB+BC+CD+AD\text{ Equation(1)} \end{gathered}[/tex]
on a parallelogram, 2 length are similear
[tex]\begin{gathered} BC=AD(\text{blue lines)} \\ \text{and} \\ AB=CD(\text{black lines)} \end{gathered}[/tex]
now, replace in equation (1)
[tex]\begin{gathered} 92=AB+BC+CD+AD\text{ Equation(1)} \\ 92=AB+AD+AB+AD \\ 92=2AB+2AD \\ 92=2(AB+AD)\text{ Equation (2)} \end{gathered}[/tex]
Step 2
now,AD is 1 cm more than twice AB, in other words, you have to add 1 to twice AB to ger AD
[tex]AD=1+2AB\text{ Equation (3)}[/tex]
Step 3
solve equation (2) and (3)
replace equation (3) in equation(2)
[tex]\begin{gathered} 92=2(AB+AD)\text{ Equation (2)} \\ 92=2(AB+(1+2AB))\text{ } \\ 92=2(AB+1+2AB) \\ 92=2(1+3AB) \\ 92=2+6AB \\ \text{subtract 2 in both sides} \\ 92-2=2+6AB-2 \\ 90=6AB \\ \text{divide both sides by 6} \\ \frac{90}{6}=\frac{6AB}{6} \\ 15=AB \end{gathered}[/tex]
Step 4
replace the value of AB in equation (3) to find AD
[tex]\begin{gathered} AD=1+2AB\text{ Equation (3)} \\ AD=1+2(15) \\ AD=1+30 \\ AD=31 \end{gathered}[/tex]
I hope this helps you