Given SU = 10. VX = 44 and TW = 2x – 1, find the value of x and the length of the median TW in Trapezoid SUXV.

The Solution.
By Similarity Theorem, we have that Trapezoid SUTW is congruent to trapezoid TWVX.
So,
[tex]\begin{gathered} \frac{SU}{TW}=\frac{TW}{VX} \\ \text{Where SU=10} \\ VX=44\text{ , TW=2x-1} \end{gathered}[/tex]Substituting these values into the ratio above, we get
[tex]\frac{10}{2x-1}=\frac{2x-1}{44}[/tex]Cross multiplying, we get
[tex]\begin{gathered} (2x-1)^2=44\times10 \\ (2x-1)^2=440 \\ \text{Square rooting both sides, we get} \\ 2x-1=\sqrt[]{440} \\ 2x-1=\pm20.976 \end{gathered}[/tex][tex]\begin{gathered} 2x=1\pm20.976 \\ \text{Dividing both sides by 2, we get} \\ x=\frac{1\pm20.976}{2} \\ \\ x=\frac{1+20.976}{2}=\frac{21.976}{2}=10.988 \\ Or \\ x=\frac{1-20.976}{2}=-9.988\text{ but x cannot be negative.} \end{gathered}[/tex]So, the correct value of x is 10.988
To find the length TW:
We substitute 10.988 for x in 2x-1
[tex]\begin{gathered} TW=2(10.988)-1 \\ \text{ =21.976-1} \\ \text{ =20.976}\approx21 \end{gathered}[/tex]Thus, the correct answer is:
x = 10.988
TW = 20.976