Respuesta :

We have

[tex]f(x)=\frac{x^2-4x+3}{x^2+ax+b}[/tex]

We have an asymptote in x=-4 and a discontinuity in x=3. Therefore, the denominator of the function is

[tex](x+4)(x-3)[/tex]

we can expand the expression and obtain the next one

[tex]\begin{gathered} (x+4)(x-3)=x^2-3x+4x-12 \\ =x^2+x-12 \end{gathered}[/tex]

The function is:

[tex]f\mleft(x\mright)=\frac{x^{2}-4x+3}{x^{2}+x-12}[/tex]

So the coefficients on the denominator are:

a= 1

b= -12

RELAXING NOICE
Relax