[tex]cos\beta=-\frac{12}{13}[/tex]
Use the next identity to find cosβ/2:
[tex]cos(\frac{\theta}{2})=\pm\sqrt{\frac{1+cos\theta}{2}}[/tex][tex]\begin{gathered} cos(\frac{\beta}{2})=\pm\sqrt{\frac{1+(-\frac{12}{13})}{2}}=\pm\sqrt{\frac{1-\frac{12}{13}}{2}}=\pm\sqrt{\frac{\frac{13-12}{13}}{2}}=\pm\sqrt{\frac{\frac{1}{13}}{2}}=\pm\sqrt{\frac{1}{26}}=\pm\frac{\sqrt{1}}{\sqrt{26}}=\pm\frac{1}{\sqrt{26}} \\ \\ Rationalize\text{ the denominator:} \\ \pm\frac{1}{\sqrt{26}}*\frac{\sqrt{26}}{\sqrt{26}}=\pm\frac{\sqrt{26}}{26} \end{gathered}[/tex]
Then, the cos(β/2) is ± √26 /26