Respuesta :

Recall the following two function transformations:

Vertical stretch by a factor k:

[tex]f\lparen x)\rightarrow k\cdot f\lparen x)[/tex]

Horizontal translation by c units:

[tex]f\lparen x)=f\lparen x-c)[/tex]

Notice that starting with the parent function f(x):

[tex]f\lparen x)=\sqrt[3]{x}[/tex]

We can apply a vertical stretch by a factor of 4 and a horizontal translation by 7 units left to get h(x):

[tex]\sqrt[3]{x}\rightarrow4\sqrt[3]{x}\rightarrow4\sqrt[3]{x-\left(-7\right)}=4\sqrt[3]{x+7}[/tex]

Therefore, the effects when f(x) is transformed to h(x) are:

- A vertical stretch by a factor of 4.

- A horizontal translation 7 units left.

Otras preguntas

RELAXING NOICE
Relax