[tex]\begin{gathered} \text{Given} \\ 3\text{ hearts} \\ 1\text{ diamond} \\ 8\text{ clubs} \end{gathered}[/tex][tex]\begin{gathered} P(\text{Not Clubs})=\frac{\text{\# of hearts}+\text{\# of diamonds}}{\text{Total \# of cards}} \\ P(\text{Not Clubs})=\frac{3+1}{3+1+8} \\ P(\text{Not Clubs})=\frac{4}{12} \\ P(\text{Not Clubs})=\frac{1}{4} \\ \\ P(\text{Not Clubs twice})=P(\text{Not Clubs})\cdot P(\text{Not Clubs}) \\ P(\text{Not Clubs twice})=\frac{1}{4}\cdot\frac{1}{4} \\ P(\text{Not Clubs twice})=\frac{1}{16} \end{gathered}[/tex]
Therefore, the probability of not choosing a club either time is 1/16.