From the identity
[tex]\sin ^2(\alpha)+\cos ^2(\alpha)=1[/tex]we can find the value for sin(α). Using our value for the cosine and solving the identity for sin(α), we have
[tex]\begin{gathered} \sin ^2(\alpha)+(\frac{7}{9})^2=1 \\ \sin ^2(\alpha)=1-(\frac{7}{9})^2 \\ \sin ^2(\alpha)=1-\frac{7^2}{9^2} \\ \sin ^2(\alpha)=1-\frac{49}{81} \\ \sin ^2(\alpha)=\frac{81}{81}-\frac{49}{81} \\ \sin ^2(\alpha)=\frac{32}{81} \\ \sin (\alpha)=\pm_{}\sqrt[]{\frac{32}{81}} \end{gathered}[/tex]Since sin(α) < 0, we have
[tex]\sin (\alpha)=-_{}\sqrt[]{\frac{32}{81}}=-\frac{4\sqrt[]{2}}{9}[/tex]The cot(α) is defined as the ratio between the cosine and sine of alpha.
[tex]\cot (\alpha)=\frac{\cos(\alpha)}{\sin(\alpha)}[/tex]Then, the cot(α) is
[tex]\cot (\alpha)=\frac{\frac{7}{9}}{-\frac{4\sqrt[]{2}}{9}}=-\frac{7}{4\sqrt[]{2}}=-\frac{7\sqrt[]{2}}{8}[/tex]This is the exact value of cot(α).
[tex]\cot (\alpha)=-\frac{7\sqrt[]{2}}{8}[/tex]