[tex]\begin{gathered} \text{Let E be Eric's score hence} \\ E=5+2J \\ \text{where J is Josh's score. Now, they score 134 point, this means that} \\ E+J=134 \\ \text{Therefore, we must solve these system of equsitons} \end{gathered}[/tex][tex]\begin{gathered} \text{Solving by substitution:} \\ By\text{ substituying the 1st equation into the 2nd, one has} \\ (5+2J)+J=134 \\ 5+2J+J=134 \\ 3J+5=134 \\ 3J=134-5 \\ 3J=129 \\ J=\frac{129}{3} \\ J=43 \end{gathered}[/tex][tex]\begin{gathered} \text{nOW, IN ORDER TO OBTAIN E, WE MUST SUBSTITUTE J=43 INTO THe second EQUATION} \\ E+43=134 \\ E=134-43 \\ E=91 \end{gathered}[/tex][tex]\text{Therefore. Eric score 91 points and Josh 43}[/tex]