Ok, let's start by calculating the distance between the point and the origin, ok? Remember the origin is the point (0,0)
[tex]d\text{ = }\sqrt[]{(-12-0)^2+(-5-0)^2}[/tex][tex]\begin{gathered} d\text{ = }\sqrt[]{144\text{ + 25 }} \\ d=\text{ }\sqrt[]{169} \\ d\text{ = 13} \end{gathered}[/tex]As the angle O is in standard position, adjacent leg = -12, opposite leg= -5 and hypotenuse = 13.
sec O = h/a
sec O= 13/-12
[tex]\sec O=-1\frac{1}{12}[/tex]