The initial momentum of the system is,
[tex]p_i=m_1u_1+m_2u_2[/tex]The final momentum of the system is,
[tex]p_f=(m_1+m_2)v[/tex]According to conservation of momentum,
[tex]p_i=p_f[/tex]Plug in the known values,
[tex]\begin{gathered} m_1u_1+m_2u_2=(m_1+m_2)v \\ v=\frac{m_1u_1+m_2u_2}{m_1+m_2} \end{gathered}[/tex]Substitute the known values,
[tex]\begin{gathered} v=\frac{(1375\text{ kg)(21 m/s)+}(1124\text{ kg)(-14 m/s)}}{(1375\text{ kg+1124 kg)}} \\ =\frac{28875\text{ kgm/s-}15736\text{ kgm/s}}{2499\text{ kg}} \\ =\frac{13139\text{ kgm/s}}{2499\text{ kg}} \\ =5.26\text{ m/s} \end{gathered}[/tex]The impulse of the car can be given as,
[tex]J=m_2(u_2-v)[/tex]Plug in the known values,
[tex]\begin{gathered} J=(1124\text{ kg)(}14\text{ m/s-5.26 m/s)} \\ =(1124\text{ kg)(}8.74\text{ m/s)} \\ =9823.76\text{ kgm/s} \end{gathered}[/tex]Therefore, the impulse of the car headed south is 9823.76 kgm/s.