Michael wants to save money for his daughters graduation gift. He deposits $775 at the end of each year in an ordinary annuity that pays 4% interest, compounded annually.

we have that
The formula for the future value of an ordinary annuity is equal to:
[tex]FV=P\lbrack\frac{(1+ \frac{r}{n} )^{nt} -1}{ \frac{r}{n} }\rbrack[/tex]where
FV is the future value
P is the periodic payment
r is the interest rate in decimal form
n is the number of times the interest is compounded per year
t is the number of years
In this problem we have
P=$775
n=1
r=4%=0.04
Part a
t=1 year
substitute
[tex]FV=775\lbrack\frac{(1+\frac{0.04}{1})^{(1\cdot1)}-1}{\frac{0.04}{1}}\rbrack[/tex]simplify
[tex]\begin{gathered} FV=775\lbrack\frac{(1+0.04)^1-1}{0.04}\rbrack \\ FV=\$775 \end{gathered}[/tex]For the first year is the same amount
Part b
For t=2 years
[tex]FV=775\lbrack\frac{(1+\frac{0.04}{1})^{(1\cdot2)}-1}{\frac{0.04}{1}}\rbrack[/tex][tex]\begin{gathered} FV=775\lbrack\frac{(1+0.04)^{(1\cdot2)}-1}{0.04}\rbrack \\ FV=\$1,581 \end{gathered}[/tex]Part c
For t=3 years
[tex]FV=775\lbrack\frac{(1+\frac{0.04}{1})^{(1\cdot3)}-1}{\frac{0.04}{1}}\rbrack[/tex][tex]\begin{gathered} FV=775\lbrack\frac{(1+0.04)^{(3)}-1}{0.04}\rbrack \\ FV=\$2,419.24 \end{gathered}[/tex]