Let:
n1 = First even number
n2 = Second even number
The numbers are even and they are consecutive, so:
[tex]\begin{gathered} n1=2n \\ n2=2n+2 \\ n\in N \end{gathered}[/tex][tex]\begin{gathered} 2n+2n+2=126 \\ \text{solve for n:} \\ 4n+2=126 \\ 4n=126-2 \\ 4n=124 \\ n=\frac{124}{4} \\ n=31 \\ ------ \\ so\colon \\ n1=2(31)=62 \\ n2=2(31)+2=64 \end{gathered}[/tex]The product of those numbers is:
[tex]62\times64=3968[/tex]