Answer:
The solution to the system of equation is;
[tex]\begin{gathered} r=5 \\ y=15 \end{gathered}[/tex]Explanation:
Given the system of equations;
[tex]\begin{gathered} 3r+2y=45\text{ -----------1} \\ 4r-y=5\text{ ----------2} \end{gathered}[/tex]Let us solve by elimination, multiply equation 2 by 2 and add to equation 1 to eliminate y;
[tex]\begin{gathered} 4r(2)-y(2)=5(2) \\ 8r-2y=10\text{ -----------3} \end{gathered}[/tex]adding to equation 1;
[tex]\begin{gathered} 3r+8r+2y-2y=45+10 \\ 11r=55 \\ r=\frac{55}{11} \\ r=5 \end{gathered}[/tex]we can now use the value of r to solve for y;
[tex]\begin{gathered} 3r+2y=45 \\ 3(5)+2y=45 \\ 15+2y=45 \\ 2y=45-15 \\ 2y=30 \\ y=\frac{30}{2} \\ y=15 \end{gathered}[/tex]Therefore, the solution to the system of equation is;
[tex]\begin{gathered} r=5 \\ y=15 \end{gathered}[/tex]