we have the quadratic equation
[tex]2x^2-4x-2=0[/tex]Convert the given equation into vertex form
so
Factor 2
[tex]\begin{gathered} 2x^{2}-4x-2=0 \\ 2x^2-4x=2 \\ 2(x^2-2x)=2 \\ (x^2-2x)=1 \end{gathered}[/tex]Complete the square
[tex]\begin{gathered} (x^2-2x+1)=1+1 \\ rewrite\text{ as perfect square} \\ (x-1)^2=2 \\ 2(x-1)^2=4 \end{gathered}[/tex]The answer is the first option
Explanation factoring part
[tex](x^2-2x)=1[/tex]Divide the term 2 by 2 and square it
2/2=1 -----> 1^2
[tex]\begin{gathered} (x^2-2x+1^2-1^2)=1 \\ (x^2-2x+1)=1+1 \\ (x^2-2x+1)=2 \end{gathered}[/tex]