a) n = (d + 2)/4
b) when d = 3, n = 5/4
d = 6, n = 2
d = 10, n = 3
Explanation:Given:
The equation relating the penny size and the length of the nail:
[tex]d=4n-2[/tex]n = length of the nail
d = penny size
To find:
a) solve for n
b) using the equation in (a) to get the lengths of the nails with the following penny sizes: 3,6 and 10
a) We will make n the subject of the formula:
[tex]\begin{gathered} d\text{ = 4n - 2} \\ add\text{ 2 to both sides:} \\ d\text{ + 2 = 4n} \\ \\ divide\text{ both sides by 4:} \\ n\text{ = }\frac{d\text{ + 2}}{4} \end{gathered}[/tex]b) we need to find the values of n for d = 3, 6, and 10 respectively
when d = 3
[tex]\begin{gathered} n\text{ = }\frac{3\text{ + 2}}{4} \\ n\text{ = 5/4} \end{gathered}[/tex]when d = 6
[tex]\begin{gathered} n\text{ = }\frac{6\text{ + 2}}{4} \\ n\text{ = 8/4 = 2} \end{gathered}[/tex]when d = 10
[tex]\begin{gathered} n\text{ = }\frac{10+2}{4} \\ n\text{ = 12/4 = 3} \end{gathered}[/tex]