Answer:
[tex]x\text{ = -9 or x = 5}[/tex]Explanation:
Here, we want to solve for the value of x
We start by rearranging the given equation
We have that as:
[tex]\begin{gathered} -x^2+45\text{ = 4x} \\ -x^2-4x+45\text{ = 0} \end{gathered}[/tex]We can use the quadratic formula here
We have that as:
[tex]x\text{ = }\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]where:
a is the coefficient of x^2 which is -1
b is the coefficient of x which is -4
c is the third number which is 45
Substituting the values, we have it that:
[tex]x\text{ = }\frac{4\pm\sqrt{-4^2-4(-1)(45)}}{2(-1)}[/tex][tex]\begin{gathered} x\text{ = }\frac{4\pm\sqrt{16\text{ + 180}}}{-2} \\ \\ x\text{ = }\frac{4\pm\sqrt{196}}{-2} \\ \\ x\text{ = }\frac{4\pm14}{-2} \\ \\ x\text{ = }\frac{4+14}{-2}\text{ or }\frac{4-14}{-2} \\ \\ x\text{ = }\frac{18}{-2}\text{ or }\frac{-10}{-2} \\ \\ x\text{ = -9 or 5} \end{gathered}[/tex]