What is an expression for the radius of the circle? What is the least possible integer value of x for the circle to exist? Explain

The area of a circle is given by the next formula:
[tex]A=\pi *r^2[/tex]___________
For the given expression of area:
[tex]\pi *r^2=4\pi x^2+12\pi x+9\pi[/tex]Use the equation above to solve r (radius):
1. Divide both sides of the equation into π
[tex]\begin{gathered} \frac{\pi *r^2}{\pi}=\frac{4\pi x^2+12\pi x+9\pi}{\pi} \\ \\ r^2=4x^2+12x+9 \end{gathered}[/tex]2. Factor the expression on the right using the notable product perfect square binomial:
[tex]\begin{gathered} (a+b)\placeholder{⬚}^2=a^2+2ab+b^2 \\ \\ 4x^2+12x+9=(2x)\placeholder{⬚}^2+2(2x)(3)+3^2 \\ 4x^2+12x+9=(2x+3)\placeholder{⬚}^2 \\ \\ \\ r^2=(2x+3)\placeholder{⬚}^2 \end{gathered}[/tex]3. Find square root of both sides of the equation:
[tex]\begin{gathered} \sqrt{r^2}=\sqrt{(2x+3)\placeholder{⬚}^2} \\ \\ r=2x+3 \end{gathered}[/tex]______________________________
To find the least possible integer value of x: As r is the radius of a circle, it cannot be a negative amount or 0, then r needs to be greather than 0:
[tex]\begin{gathered} 2x+3>0 \\ \end{gathered}[/tex]Solve the ineqaulity above:
[tex]\begin{gathered} 2x+3-3>0-3 \\ 2x>-3 \\ \\ \frac{2x}{2}>-\frac{3}{2} \\ \\ x>-\frac{3}{2} \end{gathered}[/tex]x needs to be greater than -3/2 (-1.5).