Respuesta :

EXPLANATION

Given the function f(x) = x^2 and the point x=2

Now, we need a formula for the Distance as follows:

[tex]\frac{dD}{dt}=(\frac{dD}{dx})\cdot(\frac{dx}{d\text{ t}})[/tex]

We need to compute dD/dx, this means the derivative of the distance between the points (0,0) and (2,x^2) .

The distance must be computed using the distance formula:

[tex]D=\sqrt[]{(x-0)^2+(x^2-0)^2}[/tex]

Adding terms and computing the powers:

[tex]D=\sqrt[]{x^2+x^4}[/tex]

Rearranging terms:

[tex]D=(x^4+x^2)^{\frac{1}{2}}[/tex]

Then, we must apply the first derivative of this expression by applying the chain rule as follows:

[tex]\frac{df(u)}{dx}=\frac{df}{du}\cdot\frac{du}{dx}[/tex][tex]f=u^{\frac{1}{2}},\text{ u=}x^4+x^2[/tex][tex]=\frac{d}{du}\mleft(u^{\frac{1}{2}}\mright)\frac{d}{dx}\mleft(x^4+x^2\mright)[/tex][tex]=\frac{1}{2u^{\frac{1}{2}}}\frac{d}{dx}\mleft(x^4+x^2\mright)[/tex][tex]\mathrm{Substitute\: back}\: u=x^4+x^2[/tex][tex]=\frac{1}{2\left(x^4+x^2\right)^{\frac{1}{2}}}\frac{d}{dx}\mleft(x^4+x^2\mright)[/tex]

Applying the derivatives:

[tex]=\frac{1}{2\left(x^4+x^2\right)^{\frac{1}{2}}}\mleft(4x^3+2x\mright)[/tex]

Simplifying:

[tex]=\frac{2x^2+1}{\left(x^2+1\right)^{\frac{1}{2}}}[/tex]

Plugging in x=2 into the expression:

[tex]\frac{dD}{d\text{x}}_{(2)}=\frac{2*2^2+1}{(2^2+1)^{\frac{1}{2}}}=\frac{2*4+1}{(4+1)^{\frac{1}{2}}}=\frac{8+1}{(5)^{\frac{1}{2}}}=\frac{9}{\sqrt[]{5}}[/tex]

Finally, as we already know that dx/dt = 7, we must replace terms in the expression:

[tex]\frac{dD}{dt}=(\frac{dD}{dx})\cdot(\frac{dx}{d\text{ t}})[/tex][tex]\frac{dD}{d\text{ t}}=\frac{9}{\sqrt[]{5}}\cdot7[/tex]

Multiplying numbers:

[tex]\frac{dD}{d\text{ t}}=\frac{63}{\sqrt[]{5}}=\frac{63\sqrt[]{5}}{5}=28.17[/tex]

The solution is 28.17

ACCESS MORE
EDU ACCESS
Universidad de Mexico