[tex]z=(x^2-2x)(y^2-4y)[/tex][tex]\begin{gathered} z_x=(2x-2)(y^2-4y) \\ z_y=(x^2-2x)(2y-4) \end{gathered}[/tex]
We also need the second derivatives;
[tex]\begin{gathered} z_{xx}=2(y^2-4y) \\ z_{yy}=2(x^2-2x) \\ z_{xy}=(2x-2)(2y-4) \end{gathered}[/tex]
Equate the first derivative to zero;
[tex]Critical\text{ point is \lparen1,2\rparen}[/tex][tex]\begin{gathered} A=z_{xx}(1,2)=-8 \\ C=z_{yy}(1,2)=-2 \\ B=z_{xy}(1,2)=0 \end{gathered}[/tex]
tHUS;
[tex]\begin{gathered} Since \\ AC-B^2=(-8)(-2)-0^2=16>0 \\ And\text{ A<0} \end{gathered}[/tex]
Then (1,2) is a local maximum.
Check for saddle points
[tex]No\text{ saddle points, no local minima}[/tex]