Given data:
* The initial angular velocity of the turntable is,
[tex]\omega_1=0\text{ rad/s}[/tex]* The final angular velocity of the turntable is,
[tex]\omega_2=3.49\text{ rad/s}[/tex]* The mass of the turntable is m = 0.25 kg.
* The diameter of the turntable is D = 30.5 cm.
* The number of revolutions is n = 2.6.
Solution:
The radius of the turntable is,
[tex]\begin{gathered} r=\frac{D}{2} \\ r=\frac{30.5}{2} \\ r=15.25\text{ cm} \\ r=0.1525\text{ m} \end{gathered}[/tex]The moment of inertia of turntable is,
[tex]\begin{gathered} I=\frac{1}{2}mr^2 \\ I=\frac{1}{2}\times0.25\times(0.1525)^2 \\ I=0.003kgm^2 \end{gathered}[/tex]The angular displacement of the turntable is,
[tex]\begin{gathered} \theta=2\pi n \\ \theta=2\pi\times2.6 \\ \theta=16.34\text{ rad} \end{gathered}[/tex]By the kinematics equation, the angular acceleration of the turntable in terms of angular velocity and angular displacement is,
[tex]\begin{gathered} \omega^2_2-\omega^2_1=2\alpha\theta \\ \alpha=\frac{\omega^2_2-\omega^2_1}{2\theta} \end{gathered}[/tex]Substituting the known values,
[tex]\begin{gathered} \alpha=\frac{3.49^2-0}{2\times16.34} \\ \alpha=0.373rads^{-2} \end{gathered}[/tex]Thus, the torque acting on the turntable is,
[tex]\begin{gathered} \tau=I\alpha \\ \tau=0.003\times0.373 \\ \tau=0.001119\text{ Nm} \\ \tau=11.19\times10^{-4}\text{ Nm} \end{gathered}[/tex]Thus, the torque acting on the turntable is,
[tex]11.19\times10^{-4}\text{ Nm}[/tex]