The equation of the line in the slope-intercept form is given by:
[tex]\begin{gathered} y(x)=mx+b \\ so\colon \\ y(x)=\frac{1}{2}x-2 \end{gathered}[/tex]The graph of this line is given by:
----
[tex]\begin{gathered} y=mx+b \\ (-4,0) \\ (0,3) \\ m=\frac{3-0}{0-(-4)}=\frac{3}{4} \end{gathered}[/tex]so, using the point slope equation:
[tex]\begin{gathered} y-(0)=\frac{3}{4}(x-(-4)) \\ y=\frac{3}{4}(x+4) \\ y=\frac{3}{4}x+3 \end{gathered}[/tex]-----------------------------------
Let:
[tex]\begin{gathered} y=3x+2 \\ m1=3 \end{gathered}[/tex]If 2 lines are parallel, then:
[tex]m1=m2[/tex]where m2 is the slope of the other line, so:
[tex]\begin{gathered} m2=3 \\ let\colon \\ (x1,y1)=(1,3) \end{gathered}[/tex]Using the point-slope equation:
[tex]\begin{gathered} y-y1=m(x-x1) \\ y-3=3(x-1) \\ y-3=3x-3 \\ y=3x-3+3 \\ y=3x \end{gathered}[/tex]