Solution:
Given:
Let the number of quarters coins be represented by y
[tex]\begin{gathered} Total\text{ coins is 48} \\ x+x+y=48 \\ 2x+y=48..............................(1) \end{gathered}[/tex]
The penny coin is worth one cent or $0.01
A dime is worth 10 cents or $0.10
The quarter is an American coin worth 25 cents or $0.25
The total value of the coins is;
[tex]\begin{gathered} 0.01x+0.1x+0.25y=4.98 \\ 0.11x+0.25y=4.98..................................(2) \end{gathered}[/tex]
From equation (1);
[tex]y=48-2x.................................(3)[/tex]
Substituting equation (3) into equation (2);
[tex]\begin{gathered} 0.11x+0.25(48-2x)=4.98 \\ 0.11x+12-0.5x=4.98 \\ 12-4.98=0.5x-0.11x \\ 7.02=0.39x \\ \frac{7.02}{0.39}=x \\ x=18 \end{gathered}[/tex]
Substituting the value of x gotten into equation (3);
[tex]\begin{gathered} y=48-2(18) \\ y=48-36 \\ y=12 \end{gathered}[/tex]
Therefore,
The number of pennies = 18 coins
The number of dimes = 18 coins
The number of quarters = 12 coins