Step 1
The equation of a line is given as
[tex]\begin{gathered} y=mx+c \\ \text{where } \\ m\text{ = slope} \\ c\text{ = y-intercept} \end{gathered}[/tex]The given equation is
[tex]\begin{gathered} 2x+3y\text{ = 5} \\ 3y=5-2x \\ y=\frac{5}{3}-\frac{2x}{3} \\ m=-\frac{2}{3} \end{gathered}[/tex]Step 2
For parallel lines their slopes are equal
[tex]\text{Hence the slope of the line parallel to the given equation = -}\frac{2}{3}[/tex]The equation of the required parallel line now becomes
[tex]y=c-\frac{2}{3}x[/tex]Step 3
Find the y-intercept
[tex]\begin{gathered} \text{The given points are ( -2,1) in the form of (x,y)} \\ \text{Hence,} \\ 1=c-\frac{2}{3}(-2) \\ 1-\frac{4}{3}=c \\ c=-\frac{1}{3} \end{gathered}[/tex]Step 4
Write the required equation
[tex]\begin{gathered} y=-\frac{1}{3}-\frac{2}{3}x \\ 3y=-1-2x \\ 2x+3y=-1 \end{gathered}[/tex]The answer is 2x+3y = -1