Step 1
Find the domain of the function
[tex]\begin{gathered} f(n)=10\text{ +4.75n} \\ \text{The domain refers to n} \\ \text{The max value for n = 10 minutes} \\ \text{The minimum value for n = 0 minutes} \end{gathered}[/tex]Hence the domain is given as
[tex]\begin{gathered} n\leq10 \\ \text{and} \\ n\ge0 \\ To\text{ gether, we will have} \\ \text{Domain (D) : 0}\leq n\leq10 \end{gathered}[/tex]Step 2
Find the range of the function.
[tex]\begin{gathered} f(n)\text{ = 10 + 4.75n} \\ \text{The maximum value for the rangef(n) is when n = 10} \\ f(10)\text{ = 10 + 4.75(10)=57.5} \\ \text{The minimum value for f(n) is when n =0} \\ f((0)\text{ = 10 + 4.75(0)= 10} \\ \end{gathered}[/tex]Hence, the range (f(n)) is given as
[tex]\begin{gathered} f(n)\ge10 \\ \text{and} \\ f(n)\leq57.5 \\ \text{Together, } \\ \text{Range(R) : 10}\leq f(n)\leq\text{ 57.5} \end{gathered}[/tex]