1) Let's simplify this root:
[tex]\begin{gathered} \sqrt[]{125m^6n^9}=\sqrt[]{125}\cdot\sqrt[]{m^6}\cdot\sqrt[]{n^9} \\ \sqrt[]{125}=\sqrt[]{5^2\cdot5} \\ \sqrt[]{m^6}=m^{\frac{6}{2}}=m^3 \\ \sqrt[]{n^9}=n^{\frac{8}{2}}\cdot n^{\frac{1}{2}}=n^4\sqrt[]{n} \end{gathered}[/tex]2) So, writing this one as a single one:
[tex]5\sqrt[]{5}m^3n^4\sqrt[]{n}[/tex]Note that we factored and rewrote as rational exponents.
Thus, this is the answer