Respuesta :

Given:

ABCD is isosceles trapezoid.

AC=3x-4 and BD=x+8 are the diagonals of the given trapezoid.

Required:

We need to find the value of x and the length of AC.

Explanation:

Recall that the diagonals of an isosceles trapezoid have the same length

[tex]AC=BD[/tex]

Substitute AC=3x-4 and BD=x+8 in the equation to find the value of x.

[tex]3x-4=x+8[/tex]

Add 4 to both sides of the equation.

[tex]3x-4+4=x+8+4[/tex][tex]3x=x+12[/tex]

Subtract x from both sides of the equation.

[tex]3x-x=x+12-x[/tex][tex]2z=12[/tex]

Divide both sides of the equation by 2.

[tex]\frac{2x}{2}=\frac{12}{2}[/tex][tex]x=6[/tex]

We get x =6 and substitute x =6 in the equation AC=3x-4 to find the length of AC.

[tex]AC=3(6)-4[/tex][tex]AC=14units[/tex]

Final answer:

[tex]x=6[/tex][tex]AC=14units[/tex]

RELAXING NOICE
Relax