Respuesta :
74.97 revolutions
Explanation
Step 1
The number of revolutions made by a tire traveling over a fixed distance varies inversely to
the radius of the tire
Let
The number of revolutions=n
the radius of the tire:r
then
[tex]n=\frac{\lambda}{r}[/tex]where
[tex]\lambda\text{ is a constant}[/tex]A 12-inch radius tire makes 100 revolutions to travel a certain,Hence
[tex]\begin{gathered} n=\frac{\lambda}{r} \\ 100=\frac{\lambda}{12} \\ \text{Multiply both sides by 12} \\ 100\cdot12=\frac{\lambda}{12}\cdot12 \\ 1200=\lambda \end{gathered}[/tex]so, the constant is 1200, the equation is
[tex]\begin{gathered} n=\frac{\lambda}{r} \\ n=\frac{1200}{r}\text{ equation} \end{gathered}[/tex]then, we need to find the distance
then
[tex]\begin{gathered} a\text{ revolution=2}\cdot\pi\cdot radius \\ a\text{ revolution=2}\cdot\pi\cdot12\text{ inche( for the first tire)} \\ a\text{ revolution=75.38 inches} \\ \text{then 100 revolutions = 100}\cdot75.38\text{ inches} \\ 100\text{ revolutionss=7539 inches} \end{gathered}[/tex]then,the distance is 7539 inches
Step 2
Let
n= unknown
radius=r=16 inch
distance=7539 inches
[tex]\begin{gathered} 2\cdot\pi\cdot r=2\cdot\pi\cdot16 \\ 32\cdot\pi=100.53\text{ inches} \end{gathered}[/tex]it means
[tex]1\text{ revolution}\Rightarrow100.53\text{ inches}[/tex]then
[tex]\nu\text{mber of revolutions}\cdot100.553=same\text{ distance}[/tex]replacing
[tex]\begin{gathered} N\cdot100.553=7539\text{ inches} \\ \text{divide both sides by 100.553} \\ \frac{N\cdot100.553}{100.553}=\frac{7539}{100.553} \\ N=74.97\text{ revolutions} \end{gathered}[/tex]
