Given the equation:
[tex]8\cos (2x)-36\cos (x)+28=0[/tex]
Let's solve the equation over the interval [0, 2π).
Let's simplify the equation:
Apply the double angle identity
[tex]8(2\cos ^2x-1)-36_{}\cos x+28=0[/tex]
Apply distributive property:
[tex]\begin{gathered} 8(2\cos ^2x)+8(-1)-36\cos x+28=0 \\ \\ 16\cos ^2x-8-36\cos x+28=0 \\ \\ 16\cos ^2x-36\cos x+28-8=0 \\ \\ 16\cos ^2x-36\cos x+20=0 \end{gathered}[/tex]
Factorize:
[tex]4(4\cos ^2x-9\cos x+5)=0[/tex][tex]\begin{gathered} 4(\cos ^2x(-4-5)\cos x+5)=0 \\ \\ 4(\cos x(\cos x-1)-5(\cos x-1))=0 \\ \\ 4(\cos x-1)(4\cos x-5)=0 \end{gathered}[/tex]
Take the individual factors and equate to zero:
• cos x-1 = 0
,
• 4cosx- - 5 = 0
Solve each factor for x:
[tex]\begin{gathered} \cos x-1=0 \\ \\ \cos x=1 \\ \\ x=\cos ^{-1}1 \\ \\ x=0 \end{gathered}[/tex]
Subtract the reference angle from 2π
[tex]\begin{gathered} x=2\pi-0 \\ \\ x=2\pi \\ \\ \text{ find the period:} \\ x=\frac{2\pi}{1}=2\pi \\ \\ x=2\pi\text{ n, 2}\pi+2\pi\text{ n } \\ \text{For any interger} \end{gathered}[/tex]
Second factor:
[tex]\begin{gathered} 4\cos x-5=0 \\ \\ 4\cos x=5 \\ \\ \cos x=\frac{5}{4} \\ \end{gathered}[/tex]
• The range for cosine is -1 ≤x ≤ 1.
Since cos x is not in the range, there is no solution,.
Input 0 for n in 2πn and solve:
[tex]2\pi\text{ n = }2\pi(0)=0[/tex]
Therefore, the interval contains:
x = 0
ANSWER:
x = 0