The Solution:
Given:
[tex]\begin{gathered} \mu=14.2\text{ }g\text{ /}dL \\ P(Z=\bar{x})=95\text{ \%}=0.95 \\ \bar{x}=15.9\text{ g/dL} \\ \sigma=? \end{gathered}[/tex]Required:
Find the standard deviation of the distribution of hemoglobin levels in healthy females.
From the Z-score tables, 95% of healthy females is:
[tex]P(Z=x)=1.65[/tex]Formula:
[tex]P(Z=\bar{x})=\frac{\bar{x}-\mu}{\sigma}[/tex]Substitute:
[tex]1.65=\frac{15.9-14.2}{\sigma}[/tex][tex]\sigma=\frac{1.7}{1.65}=1.03[/tex]Answer:
1.03