What is the measure of arc RST?51 degrees204 degrees180 degrees102 degrees

Given the diagram in the question, we can draw lines from points R and T to the center of the circle as shown below:
Given that the radius of a circle bisects the tangent perpendicularly, we have that:
[tex]\angle ORm=90\degree[/tex]Therefore, we have:
[tex]\angle TRO=\angle TRm-\angle ORm[/tex]Given:
[tex]\angle TRm=102\degree[/tex]Then:
[tex]\angle TRO=102-90=12\degree[/tex]Using an isosceles triangle, we have that:
[tex]\begin{gathered} \angle TRO+\angle OTR+\angle ROT=180\degree \\ \angle TRO=\angle OTR=12\degree\text{ (Base angles of isosceles triangle)} \end{gathered}[/tex]Therefore, we have:
[tex]\begin{gathered} 12+12+\angle ROT=180\degree \\ \angle ROT=180-12-12 \\ \angle ROT=156\degree \end{gathered}[/tex]This is the arc angle of RT.
Therefore, the measure of arc RST can be gotten by using the angles at a point, so that we have:
[tex]\begin{gathered} \angle RST=360-\angle ROT \\ \angle RST=360-156 \\ \angle RST=204\degree \end{gathered}[/tex]The correct option is the SECOND OPTION.