Respuesta :

Given the diagram in the question, we can draw lines from points R and T to the center of the circle as shown below:

Given that the radius of a circle bisects the tangent perpendicularly, we have that:

[tex]\angle ORm=90\degree[/tex]

Therefore, we have:

[tex]\angle TRO=\angle TRm-\angle ORm[/tex]

Given:

[tex]\angle TRm=102\degree[/tex]

Then:

[tex]\angle TRO=102-90=12\degree[/tex]

Using an isosceles triangle, we have that:

[tex]\begin{gathered} \angle TRO+\angle OTR+\angle ROT=180\degree \\ \angle TRO=\angle OTR=12\degree\text{ (Base angles of isosceles triangle)} \end{gathered}[/tex]

Therefore, we have:

[tex]\begin{gathered} 12+12+\angle ROT=180\degree \\ \angle ROT=180-12-12 \\ \angle ROT=156\degree \end{gathered}[/tex]

This is the arc angle of RT.

Therefore, the measure of arc RST can be gotten by using the angles at a point, so that we have:

[tex]\begin{gathered} \angle RST=360-\angle ROT \\ \angle RST=360-156 \\ \angle RST=204\degree \end{gathered}[/tex]

The correct option is the SECOND OPTION.

Ver imagen MckennaG534566
RELAXING NOICE
Relax