Respuesta :

Solution

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given combination expression

[tex]^nC_4[/tex]

STEP 2:Write the formula for combination

[tex]^nC_r=\frac{n!}{(n-r)!r!}[/tex]

STEP 3: Substitute the values

[tex]^nC_4=\frac{n!}{(n-4)!4!}[/tex]

Rewrite n!

[tex]n!=n(n-1)(n-2)(n-3)(n-4)![/tex]

We stop at (n-4)! so that it can be used to cancel out the (n-4)! which is the denominator of the combination expression. Therefore, we have:

[tex]\begin{gathered} \frac{n(n-1)(n-2)(n-3)(n-4)!}{(n-4)!4!} \\ \\ (n-4)!\text{ cancels out each other to have:} \\ \frac{n(n-1)(n-2)(n-3)}{4!} \\ 4!=4\times3\times2\times1 \\ We\text{ have:} \\ \frac{n(n-1)(n-2)(n-3)}{4\times3\times2\times1}=\frac{n(n-1)(n-2)(n-3)}{24} \end{gathered}[/tex]

Hence, the reason for having the expression in the image question.

Ver imagen SubhanK697304
RELAXING NOICE
Relax