ANSWER
[tex]cos^2x\text{ -}\frac{1}{2}\text{ = }\frac{1}{2}cos(2x)[/tex][tex]6\text{ sin x cos x = 3 sin \lparen2x\rparen}[/tex]EXPLANATION
Given:
[tex]\begin{gathered} 1).\text{ }cos^2x\text{ - }\frac{1}{2} \\ 2).\text{ 6 sin x cos x} \end{gathered}[/tex]Desired Outcome:
Rewrite the expression as a sin, cos or tan using difference formulas or a double angle formula.
Double angle formula identities
[tex]\begin{gathered} cos\text{ \lparen2x})\text{ = cos}^2x\text{ - sin}^2x\text{ .................equ 1} \\ cos\text{ \lparen2x\rparen = 2 cos}^2x\text{ - 1 .....................equ 2} \\ cos\text{ \lparen2x\rparen = 1 -2 sin}^2x\text{ ..........................equ 3} \end{gathered}[/tex][tex]sin\text{ \lparen2x\rparen= 2 sin x cos x ...............equ 4}[/tex]Part A: Applying equation 2
[tex]cos^2x\text{ - }\frac{1}{2}\text{ = }\frac{1}{2}cos\text{ \lparen2x\rparen}[/tex]Part B: Applying equation 4
[tex]6\text{ sin x cos x = 3 sin \lparen2x\rparen}[/tex]