Given the table:
Year Population(millions)
2010 37.3
2011 37.6
2012 38.0
2013 38.3
2014 38.6
2015 38.9
2016 39.2
2017 39.4
2018 39.5
2019 39.5
Let's answer the following.
(a) Let's build a regression model that bets fits this data.
Let t = 0 in 2010.
To build a regression model, apply the formula:
y = mx + b
where m is the slope and b is the y-intercept of the regresion line.
To find the slope, m, apply the formula:
[tex]m=\frac{n(\sum ^{}_{}xy)-\sum ^{}_{}x\sum ^{}_{}y}{n(\sum ^{}_{}x^2)-(\sum ^{}_{}x)^2}[/tex]
Since t = 0 in 2010, we have:
t = 1 in 2011
t = 2 in 2012
t = 3 in 2013
t = 4 in 2014
t = 5 in 2015
t = 6 in 2016
t = 7 in 2017'
t = 8 in 2018
t = 9 in 2019
[tex]\sum ^{}_{}x=0+1+2+3+4+5+6+7+8+9=45[/tex][tex]\sum ^{}_{}y=37.3+37.6+38.0+38.3+38.6+38.9+39.2+39.4+39.5+39.5=386.3[/tex][tex]\sum ^{}_{}xy=1759.9[/tex][tex]\begin{gathered} \sum ^{}_{}x^2=0^2+1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+9^2=285 \\ \\ \sum ^{}_{}y^2=37.3^2+37.6^2+38.0^2+38.3^2+38.6^2+38.9^2+39.2^2+39.4^2+39.5^2+39.5^2=14928.61 \end{gathered}[/tex]
Thus, to find the slope, we have:
Where n is the number of data = 10
[tex]\begin{gathered} m=\frac{n(\sum^{}_{}xy)-\sum^{}_{}x\sum^{}_{}y}{n(\sum^{}_{}x^2)-(\sum^{}_{}x)^2} \\ \\ m=\frac{10(1759.9)-45\ast386.3}{10(285)-45^2}=0.26 \end{gathered}[/tex]
To find the y-intercept, we have:
[tex]\begin{gathered} b=\frac{(\sum ^{}_{}y)(\sum ^{}_{}x^2)-\sum ^{}_{}x\sum ^{}_{}xy}{n(\sum ^{}_{}x^2)-(\sum ^{}_{}x)^2} \\ \\ b=\frac{(386.3)(485)-45\ast1759.9}{10(285)-(45)^2}=37.45 \end{gathered}[/tex]
Therefore, the regression model that best fits this data is:
[tex]P_t=0.26t+37.45[/tex]
(b) To find the population of the model in 2025, substitute 15 for t and evalaute:
t = 15 in 2025
[tex]\begin{gathered} P_{25}=0.26(15)+37.45 \\ \\ P_{25}=41.35 \end{gathered}[/tex]
Therefore, the population in 2025 will be 41.35 million people.
(c) When the model predicts the population will reach 40 million.
Substitute 40 for Pt and find t:
[tex]\begin{gathered} 40=0.26t+37.45 \\ \\ 40-37.45=0.26t \\ \\ 2.55=0.26t \\ \\ t=9.81\approx10 \end{gathered}[/tex]
When t = 10, the year is 2020.
Therefore, the model predicts the population will reach 40 million by 2020.