Respuesta :

Answer:

[tex]y_{}=-\frac{1}{3}x+\frac{5}{3}[/tex]

Explanation:

Given the line y=3x+4

Comparing it to the slope-intercept form, y=mx+b

• Slope of y=3x+4 = 3

Two lines are perpendicular if the product of their slopes is -1.

Let the slope of the new line = m

[tex]\begin{gathered} 3m=-1 \\ m=-\frac{1}{3} \end{gathered}[/tex]

The slope of the perpendicular to the given line that goes through (2,1) is:

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-1=-\frac{1}{3}(x-2_{}) \end{gathered}[/tex]

We then write it in slope-intercept form.

[tex]\begin{gathered} y_{}=-\frac{1}{3}x+\frac{2}{3}+1 \\ y_{}=-\frac{1}{3}x+\frac{5}{3} \end{gathered}[/tex]

RELAXING NOICE
Relax