Given the equations:
[tex]\begin{gathered} -3(x-1)=2x+4-5x \\ \\ \frac{1}{2}(10x-3)=2+5x-\frac{7}{2} \\ \\ 2(2x-1)=x+4 \end{gathered}[/tex]Let's evaluate each equation.
[tex]\begin{gathered} -3(x-1)=2x+4-5x \\ \\ -3x+1=2x+4-5x \\ \\ -3x-2x+5x=4-1 \\ \\ 0=3 \\ \\ \text{This equation has no solution} \end{gathered}[/tex][tex]\begin{gathered} \frac{1}{2}(10x-3)=2+5x-\frac{7}{2} \\ \\ 5x-\frac{3}{2}=2+5x-\frac{7}{2} \\ \\ \text{Multiply through by 2 to eliminate the fraction:} \\ 5x(2)-\frac{3}{2}\ast2=2(2)+5x(2)-\frac{7}{2}\ast2 \\ \\ 10x-3=4+10x-7 \\ \\ 10x-10x=4-7+3 \\ \\ 0=0 \\ \\ This\text{ equation has infinitely many solutions} \end{gathered}[/tex][tex]\begin{gathered} 2(2x-1)=x+4 \\ \\ 4x-2=x+4 \\ \\ \text{Subtract x from both sides:} \\ 4x-x-2=x-x+4 \\ \\ 3x-2=4 \\ \\ \text{Add 2 to both sides:} \\ 3x-2+2=4+2 \\ \\ 3x=6 \\ \\ \text{Divide both sides by 3:} \\ \frac{3x}{3}=\frac{6}{3} \\ \\ x=2 \\ \\ \text{This equation has one solution} \end{gathered}[/tex]The statement that explains a way you can tell the equation has no solutions is:
It is equivalent to an equation that has the same variable terms but different constant terms on either side of the equal sign.
ANSWER:
Equation that has no solution: -3(x-1)=2x+4-5x
It is equivalent to an equation that has the same variable terms but different constant terms on either side of the equal sign.