Respuesta :

On any triangle, the sum of the measures of the internal angles is 180°. Then:

[tex]m\angle A+m\angle B+m\angle C=180[/tex]

Substitute the expressions for each angle, solve for x and find the measure of each angle:

[tex]\begin{gathered} \Rightarrow x+3x+4x-12=180 \\ \Rightarrow8x-12=180 \\ \Rightarrow8x=180+12 \\ \Rightarrow8x=192 \\ \Rightarrow x=\frac{192}{8} \\ \Rightarrow x=24 \end{gathered}[/tex]

To find the measure of each angle, substitute x=24 into the expressions:

[tex]\begin{gathered} m\angle A=x \\ \Rightarrow m\angle A=24 \end{gathered}[/tex][tex]\begin{gathered} m\angle B=3x \\ \Rightarrow m\angle B=3(24) \\ \Rightarrow m\angle B=72 \end{gathered}[/tex][tex]\begin{gathered} m\angle C=4x-12 \\ \Rightarrow m\angle C=4(24)-12 \\ \Rightarrow m\angle C=96-12 \\ \Rightarrow m\angle C=84 \end{gathered}[/tex]

Therefore, the measures of the three angles are:

[tex]\begin{gathered} m\angle A=24 \\ m\angle B=72 \\ m\angle C=84 \end{gathered}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico