Starting with the equation:
[tex]\sin (3x+5)=\cos (4x+1)[/tex]Remember the following property:
[tex]\cos (90-A)=\sin (A)[/tex]Then:
[tex]\sin (89-4x)=\sin (90-4x-1)=\cos (4x+1)[/tex]Then, the given equation translates to:
[tex]\sin (3x+5)=\sin (89-4x)[/tex]Then:
[tex]3x+5=89-4x[/tex]Solve for x:
[tex]\begin{gathered} \Rightarrow3x+4x=89-5 \\ \Rightarrow7x=84 \\ \Rightarrow x=\frac{84}{7} \\ \Rightarrow x=12 \end{gathered}[/tex]Therefore, the value of x that satisfies the equation, is:
[tex]x=12[/tex]