Respuesta :

The Solution:

Given the value below:

[tex]\cos \lbrack\sin ^{-1}(-0.845)\rbrack[/tex]

We are asked to find the value of the above expression rounded to the nearest thousandth.

So, applying the property rule:

[tex]\sin ^{-1}(-x)=-\sin ^{-1}(x)[/tex]

We have that:

[tex]\sin ^{-1}(-0.845)=-\sin ^{-1}(0.845)=-57.671936[/tex]

So, it follows that:

[tex]\cos \lbrack\sin ^{-1}(-0.845)\rbrack=\cos (-57.671936)[/tex]

Applying the property rule:

[tex]\cos (-x)=\cos (x_{})[/tex]

We have that:

[tex]\cos \lbrack\sin ^{-1}(-0.845)\rbrack=\cos (-57.671936)=\cos (57.671936)=0.534766[/tex]

Rounding to the nearest thousandth, we get

[tex]\cos \lbrack\sin ^{-1}(-0.845)\rbrack=\cos (-57.671936)=0.534766\approx0.535[/tex]

Therefore, the correct answer is 0.535

RELAXING NOICE
Relax