Instructions: Interpret the function given in the context of the real-world situation described to answer the question.

Given:
[tex]\begin{gathered} W(d)=1650(.85)^d \\ where,\text{ d is the number of days} \end{gathered}[/tex]Requirement:
The percentage of the population of the weed increases each day.
Explanation:
let 1650.85 = P
So the percentage increases each day =
[tex]\frac{P^d-P^{d-1}}{P^{d-1}}*\text{ 100}[/tex][tex]=\text{ \lparen P}^1^{\text{ }}-\text{ 1\rparen *100}[/tex]B
[tex](1650.85^1-1)*100[/tex]By putting the value of P
Percentage = 164985%
Final Answer:
164985%