Respuesta :

Given:

[tex]\begin{gathered} W(d)=1650(.85)^d \\ where,\text{ d is the number of days} \end{gathered}[/tex]

Requirement:

The percentage of the population of the weed increases each day.

Explanation:

let 1650.85 = P

So the percentage increases each day =

[tex]\frac{P^d-P^{d-1}}{P^{d-1}}*\text{ 100}[/tex][tex]=\text{ \lparen P}^1^{\text{ }}-\text{ 1\rparen *100}[/tex]

B

[tex](1650.85^1-1)*100[/tex]

By putting the value of P

Percentage = 164985%

Final Answer:

164985%

RELAXING NOICE
Relax